Modeling Neurodegeneration with Single Cell RNA Sequencing

Background / Motivation

• Single Cell RNA Sequencing: transcriptional profiling of thousands of individual cells

NR Neuroscience Research Institute

- Our goal is to **model neurodegeneration** in brain organoids by single cell RNA sequencing
- We aim to understand the **different types of cells** present in brain organoids, and how they differ
- We aim to compare differences in gene expression between control and **mutant** brain organoids, and **analyze** which processes they affect

Data

- Filtered single-cell expression dataset given to us by our sponsor
- Organoids vary across different cell lines control vs. mutant and age
- **Quality control** performed to remove low quality cells, but batch effects are still present
- Size: ~76k cells, ~22k genes
- Sparse: many genes are rarely registered

Samples and # of cells:

	R406W mutation					V337M mutation						
	donor1: F11362 "406RW1"		donor2: F11421 "406RW2"		donor3: GIH143 "406WW1"	donor1: ND32951A "V337M1"		donor2: GIH6 "V337M2"		donor3: GIH7 "V337M3"		
line	RW	RR	RW	RR		VM	VV	VM	VV	VM	VV	VV
	(F11362.1.	(F11362.1.	(F11421.12	(F11421.12	ww	(ND32951A.15	(ND32951A15	(GIH6-1-C1	(GIH6-1-C1	(GIH7-C2	(GIH7-C2	(GIH7-C2
age	ΔF10)	ΔC11)	parent)	ΔA07)	(GIH143-C3)	Δ2B09)	Δ1B06)	ΔA02)	ΔE11)	Δ2A01)	Δ2B12)	Δ2F02)
1 mo			997	1098								
2 mo	1768	1506	1400	997	868 / 1047	1684	1252	1170	987	975	1333	1085
3 mo	917	1095	1551	1510	2093 / 1509	1078	1207	1327	1165	1260	1160	1586
4 mo	1181	1351			783	932 / 1087 / 1264	868 / 940 / 1110	1085 / 1202	1226 / 992	1257	1372	897
6 mo	1421 / 1308	1060 / 1331			1275	1399/1445	1876 / 1083	1540 / 967	1738 / 1268	1150	1046	1234
8 mo	1378	1421										

- Key ontologies **upregulated** in in the mutant line \bullet were neuron projection development, regulation of nervous system development, positive regulation of neuron death, and negative regulation of microtubule polymerization or depolymerization.
- **Downregulated** ontologies included translation and ribosome function, protein folding

Organoid Dataset

Preprocessing

Jake Stenger | Nancy Zha | Sara Mandic

Sponsor: Stella Glasauer | Mentor: Megan Elcheikhali

Results

- CORUM:306: Ribosome, cytoplasmic GO:0042254: ribosome biogenesis
- GO:1904667: negative regulation of ubiquitin protein ligase activity
- GO:0042274: ribosomal small subunit biogenesis
- GO:0006417: regulation of translation
- WP4629: Aerobic glycolysis
- WP3888: VEGFA-VEGFR2 signaling pathway CORUM:6838: IGF2BP1 complex
- GO:0045727: positive regulation of translation
- CORUM:5266: TNF-alpha/NF-kappa B signaling complex 6
- GO:2001244: positive regulation of intrinsic apoptotic signaling pathway
- GO:0006414: translational elongation
- GO:0045926: negative regulation of growth
- GO:0061844: antimicrobial humoral immune response mediated by antimicrobial peptide
- GO:0048812: neuron projection morphogenesis

Downregulated ontologies: two-line mutation

Cell Trajectory analysis with partitions

Exploratory Analysis/ Preprocessing

Cell clusters labelled with cell types corresponding to marker genes they differentially express

Relative frequencies of cell types in control vs. mutant

Conclusion

- **Cell identification**: We labeled most clusters with likely cell types and found almost all expected types of brain cells
- **Ontology analysis**: Found gene ontologies impacted in the mutant group which align with existing research and suggest other effects.
- **Cell Trajectory (Pseudotime) analysis:** Visualized arrangement of cells according to their developmental stage in biological processes, and found that organoids continue to develop through 8 months

Acknowledgments

• A special thank you to our mentor Megan Elcheikhali, our sponsor Stella Glasauer, and our professors Trevor Ruiz, Alexander Franks, Tim Robinson, and Ambuj Singh

