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Goal: Clean and organize covariate data from 140+ surveys, merge demographic information Gender as a predictor of opinion on climate change severity
into existing data processing routines. Then develop predictive models to understand how
demographic attributes are differentially predictive of climate opinion in different countries,
continents, and time periods.

Over the course of the capstone, we had several discussions with the ENVENT
team in regards to the types of models we could try to incorporate.
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Estimate Std. Error t value Pr(>|t|) respondent_gender 0.43524  0.07186 6.057 1.39e-09 **=
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Data

Residual standard error: 0.2313 on 14840 degrees of freedom Null deviance: 6478.7 on 14841 degrees of freedom
(3078259 observations deleted due to missingness) Residual deviance: 6441.4 on 14840 degrees of freedom

Multiple R-squared: 0.002505, Adjusted R-squared: 0.002437 (3078259 observations deleted due to missingness)
F-statistic: 37.26 on 1 and 14840 DF, p-value: 1.058e-09 AIC: 6445.4
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The features of our dataset are different questions pertaining to climate change and begin conducting a preliminary exploratory analysis for seven demographic variables (see
respondent demographics which we merged into the final dataset, such as gender, age, S Data section). The data-preprocessing task ended up becoming our largest obstacle over
level of education, race, income, etc e the course of this capstone and subsequently we ran out of time to analyze every variable.
. . . . . . With that said however, we were ultimately still able to set the foundation for further
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variables rather than observations. To fix this, we created modification variables that shift the o _ ,
country responses to observations in order to obtain a dataset that we are able to model on. the necessary proof of concepts for modifying the demographic variable values and
merging them into the megapoll.
Since we are working with self reported survey data there is also likely to be a good amount The bar chart displayed above conveys the similarities between linear regression
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: P ' positive/negative relationship of gender and its effect on climate opinion. - Continue merging demographic data into the megapoll for analysis.
Continue generating exploratory plots to pinpoint potential areas of interest
The difference in interpretation of the two magnitude types is due to the fact that for further investigation.
linear regression coefficients represent the direct magnitude change in the - Begin region-specific or tlmg-serles exploratlohs.
response value when the binary predictor value increases from O to 1, whereas - Develop more complex supervised and unsupervised ML models such as
logistic regression coefficients represent the odds ratio between the predictor SVMs or PCA which could.m.ake predictions of an individual's climate score
values - the ratio is equal to eP which, in the context of our project, translates to based on their demographic info.

“Females are eB times the odds of Males for viewing climate change as a threat.” - Further improve standardizations for concern scores and demographics.
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